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Abstract
This study evaluated the genetic structure of wild populations of the endangered 

primate, Leontopithecus chrysomelas. We tested the assumption that populations of L. 
chrysomelas, given their larger population size and a higher degree of habitat continuity, 
would have higher genetic diversity and less genetic structuring than other lion tama-
rins. We used 11 microsatellites and 122 hair samples from different locations to assess 
their genetic diversity and genetic structure, and to make inferences about the isolation 
by distance. The overall expected heterozygosity (0.51 ± 0.03) and the average number 
of alleles (3.6 ± 0.2) were relatively low, as is the case in other endangered lion tamarins. 
Genetic clustering analyses indicated two main clusters, whereas the statistical analyses 
based on genotype similarities and Fst suggested further substructure. A Mantel test 
showed that only 34% of this genetic differentiation was explained by the linear dis-
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tance. In addition to linear distance, structural differences in the landscape, physical bar-
riers and behavioural factors may be causing significant genetic structuring. Overall, this 
study suggests that these populations have a relatively low genetic diversity and a rela-
tively high population genetic structure, putting in question whether the presence of 
agroforest systems (known locally as cabruca) is enough to fully re-establish functional 
landscape connectivity. © 2018 S. Karger AG, Basel

Introduction

Deforestation often causes primate populations to become smaller and isolated 
[Ferreira da Silva and Bruford, 2017]. The degree of habitat disturbance and the prop-
erties of the landscape influence primate dispersal and gene flow, consequently affect-
ing genetic diversity and population density, and ultimately extinction probabilities 
[Arroyo-Rodríguez and Mandujano, 2009]. Lion tamarins, Leontopithecus spp., are 
an example of primates that rarely travel on the ground, especially in open areas [Co-
imbra-Filho and Mittermeier, 1973]. Limited connectivity of forest habitat in a land-
scape comprising forest and non-forest can hence constrain lion tamarin dispersal 
[Raboy et al., 2010]. Given the high degree of fragmentation in the Atlantic Coastal 
Rain Forest [Ribeiro et al., 2009], we expect populations of this endangered species to 
have limited gene flow and thus a relatively high degree of genetic structure and low 
retention of within-population genetic diversity over time [Moraes et al., 2017]. 

Of the 4 species of lion tamarins, the golden-headed lion tamarin (GHLT), Le-
ontopithecus chrysomelas (Kuhl 1820), has the highest population estimates – 6,000–
15,000 individuals [Pinto and Rylands, 1997] – and largest current geographic distri-
bution; however, its remaining forest habitat is extremely fragmented [Coimbra- 
Filho and Mittermeier, 1973]. The degree of habitat fragmentation is not uniformly 
distributed across its range. The eastern portion of the GHLT distribution consists of 
relatively continuous forest in various stages of degradation, connected by shade-
cocoa agroforest referred to as cabruca, in which some of the forest canopy is retained 
[Pinto and Rylands, 1997; Raboy et al., 2010]. This area includes Una Biological Re-
serve (REBIO), situated within the largest forest patch in the GHLT distribution and 
considered to be the only patch adequate to hold a viable population with zero prob-
ability of extinction and retention of 98% of the genetic diversity over 100 years [Holst 
et al., 2006; Zeigler et al., 2010]. Cabruca is the dominant forest type in this region and 
is thought to play an important role in GHLT conservation because it functions as a 
viable habitat for survival and reproduction, and presumably permits dispersal and 
gene flow [Raboy et al., 2004; Oliveira et al., 2011]. By contrast, the western portion 
of the species’ geographic distribution comprises semi-deciduous forest and is more 
highly fragmented than the evergreen forest in the eastern region. The non-forest 
matrix in this region is largely dominated by cattle pasture [Pinto and Rylands, 1997; 
Guidorizzi, 2008; Raboy et al., 2010]. 

The objectives of this study were to assess the genetic diversity of wild GHLTs in 
different habitats present within its distribution in order to calculate the degree of 
population genetic structure and to use these results to infer the level of gene flow in 
relation to geographic distance. For this, we used microsatellite markers that were 
simple, short and neutral repetitive sequences of genomic DNA with a high rate of 
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mutation and polymorphism and therefore suitable for studies focusing on recent 
population genetic structure [Goldstein and Schlotterer, 1999]. We expected that, 
given their larger population size and higher degree of habitat continuity, GHLT 
populations, particularly those in the eastern region, would manifest higher genetic 
diversity and less population genetic structuring than other species of lion tamarins, 
whose populations are significantly smaller (less than 3,000 individuals) [Holst et al., 
2006]. We also examined the assumption used in conservation planning for GHLTs 
that the presence of cabruca in the eastern region results in relatively continuous suit-
able habitat and that, as a result, the predominant factor influencing population ge-
netic similarity will be the distance between populations. 

Materials and Methods 

Study Area and Sample Collection 
We collected samples between 2003 and 2009 from GHLTs in Una Biological Reserve (re-

ferred to as REBIO), and in privately owned lands in the eastern and western regions of the spe-
cies, geographic distribution in southern Bahia, Brazil (Fig. 1). The 18,715-ha federal Biological 
Reserve [ICMBio, 2015] consists of relatively pristine forests on the eastern side (known locally 
as Maruim) and degraded forests on the western side (known locally as Piedade) [Holst et al., 
2006]. The privately owned lands in the eastern portion of the species distribution included: (1) 
cabruca in the Ilhéus municipality (sampled at 3 different farms), and a mosaic of forest types in 
both (2) Ararauna (Una municipality) and (3) Teimoso (Jussari municipality) farms. 

The structure of cabruca is similar to that of mature forests, but with a lower density of trees 
in the overstory, and an understory replaced by cocoa trees. Forest mosaics are characterized by 
a combination of 2 or 3 types of vegetation: cabruca, mature forest, and secondary regrowth 
[Raboy et al., 2004; Oliveira et al., 2011]. In the western portion of the species’ distribution, all 
samples were collected from GHLTs in a 450-ha privately owned farm called Barro Branco, situ-
ated in a forest fragment that has been isolated for nearly 50 years. This fragment was composed 
of semi-deciduous secondary forest in various stages of regeneration surrounded by cattle pasture 
and held an estimated 32 GHLTs. In the western portion of the species’ distribution the forest 
remnants, such as Barro Branco, are smaller than those found in the east and have suffered in-
tensely from edge effects caused by selective logging and cattle grazing [Guidorizzi, 2008].

Hair samples of individually marked GHLT individuals were pulled directly from 122 ani-
mals distributed in 5 geographic groups: REBIO (81), Ilhéus (18), Ararauna (9), and Teimoso (7) 
in the eastern portion, and Barro Branco (7) in the western portion of the species distribution. 
These groups were captured at 6-month intervals as part of the ongoing ecological studies to take 
biometric measures, monitor group compositions and change the radio-collars used to track and 
monitor the groups [Raboy and Dietz, 2004; Oliveira et al., 2011; Catenacci et al., 2016]. Focal 
groups were prebaited in high-use areas for approximately 1 week and captured using Tomahawk 
live traps. Subsequently, they were brought to an onsite laboratory for processing and released 
the next day early in the morning at the site of capture. Capture protocols, detailed in Dietz et al. 
[1996] and Catenacci et al. [2016], were approved by the Brazilian authorities (IBAMA, ICMBio, 
SISBIO). Within REBIO, we collected samples from social groups in two separate parts of the 
reserve, 9 from Maruim and 6 from Piedade. We did not observe lion tamarins dispersing be-
tween the two portions of the Reserve, which were separated by approximately 13 km. We sam-
pled 3 social groups in Ilhéus: Almada and Bonfim groups, which were neighbouring groups with 
an estimated 80% territory overlap, and Santa Rita which was located 3 km away from the other 
2 groups [Oliveira et al., 2011]. We sampled 2 social groups in Barro Branco, and 1 group each in 
Ararauna and Teimoso. All hair samples were stored in paper bags and preserved in boxes con-
taining silica at the DNA Collection of Wild Fauna and Flora certified as a bona fide depository 
by the Genetic Heritage Management Council (Conselho de Gestão do Patrimônio Genético) of 
the Brazilian Ministry of the Environment.
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Brazil

GHLT range

N

Rio Contas

Ilhéus3
4
5

78

Rio Pardo

Barro Branco Teimoso
REBIO

Ararauna

Rio Jequitinhonha
0 25 50

km

Sample locations
Bare, urban, non-forest
Mature forest
Secondary forest
Shade-cocoa forest

6

2

1

Fig. 1. Geographic distribution of L. chrysomelas in Bahia State (Brazil) and sampling locations 
(triangles): 1 and 2 = Maruim and Piedade, both in Una Biological Reserve (REBIO; black poly-
gon) (15°11’54” S, 39º03′35” W); 3, 4 and 5 = Bonfim, Almada and Santa Rita farms (14°40’01” 
S, 39º11’44” W; 14°39’28” S, 39°11’49” W; 14°41’56” S, 39°11’50” W), all three in Ilhéus munici-
pality; 6 = Ararauna (15°18’29” S, 39°10’07” W); 7 = Teimoso farm (15°09’16” S, 39°31’47” W); 
8 = Barro Branco (15°08’25” S, 39°57’21” W). Land cover categories were reclassified from Lan-
dau et al. [2003].
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Laboratory Procedures
The laboratory procedures were performed between the years 2009 and 2010. DNA was ex-

tracted from 122 hair samples using DNeasy blood and tissue kits (Qiagen) following the manu-
facturer’s protocol. We used multiple hairs (about 15 hairs) to extract 200 µL of eluate per indi-
vidual. Eleven microsatellites were amplified, and all analysed individuals had less than 35% of 
missing loci. To estimate the genotyping error rate, we also re-amplified approximately 5% ran-
domly chosen samples. 

PCR reactions were carried out for each locus separately in a 10-µL volume, and products 
from 1 to 4 loci were diluted and pooled together, based on yield, size range and fluorescent dye, 
for genotyping. DNA amplifications were performed in the thermocycler TC412 (Techn), and 
profiles of the amplification reactions can be seen in Table 1. Seven polymorphic loci isolated 
from L. chrysomelas were used – Lchµ1, Lchµ3, Lchµ4, Lchµ5, Lchµ6, Lchµ8 and Lchµ9 [Galbus-
era and Gillemot, 2008]. These primers were constructed with M13 tails and used in combination 
with an M13 primer that had the complementary sequence but was dye-labelled, following the 
protocol established by Schuelke [2000]. These PCR reactions contained: ≤10 ng of DNA, 0.2 µM 
of the reverse and M13-fluorescent primers, 0.0135 µM of the M13-tailed forward primer, 1 unit 
of platinum Taq DNA polymerase (Invitrogen), 1× PCR buffer (Invitrogen); 1.5 mM MgCl2 (In-
vitrogen), 100 µM of each dNTP (Amersham Biosciences), and 1% trehalose for the elimination 
of spurious bands. Microsatellite alleles were separated and visualized on the ABI 3500 automat-
ic sequencer using GS 600Liz size standard. GeneMapper 4.1 software (Applied Biosystems) was 
used to assign allele sizes to individuals. 

Four microsatellite markers isolated from Leontopithecus chrysopygus were also used: 
Leon2, Leon21, Leon27 and Leon30 [Perez-Sweeney et al., 2005]. The PCRs were performed con-

Table 1. PCR cycle conditions, based on Perez-Sweeney et al. [2005] and Galbusera and Gillemot 
[2008]

Primer Genbank Repeat Repeat motif Size,
bp

Initial 
temp.

Cycles Temperature Final 
temp.

denatura-
tion

anneal-
ing

extension

Leon2 AY706915 DI (CA)18(CG)(CA)3 207 95° C
15 min

35× 94° C
1 min

55° C
1 min

72° C
1 min

72° C
5 min

Leon21 AY706922 DI (GT)19(NA)1(GT)5 285 95° C
15 min

35× 94° C
1 min

61.8° C
1 min

72° C
1 min

72° C
5 min

Leon27 AY706925 DI (CA)11 195 95° C
15 min

35× 94° C
1 min

58° C
1 min

72° C
1 min

72° C
5 min

Leon30 AY706927 DI (TC)25(AA)(TC)
(TG)16

256 95° C
15 min

35× 94° C
1 min

58° C
1 min

72° C
1 min

72° C
5 min

Lchµ1a DQ979343 TETRA (TTTA)8(TTT)
(ATTT)(TT)

214 94° C
5 min

30× 94° C
30 s

56° C
45 s

72° C
45 s

72° C
10 min

Lchµ3a DQ979345 TETRA (GATA)16 339 94° C
5 min

30× 94° C
30 s

60° C
45 s

72° C
45 s

72° C
10 min

Lchµ4a DQ979346 TETRA (GATA)14 409 94° C
5 min

30× 94° C
30 s

56° C
45 s

72° C
45 s

72° C
10 min

Lchµ5a DQ979348 TETRA (GAAG)21 298 94° C
5 min

30× 94° C
30 s

58° C
45 s

72° C
45 s

72° C
10 min

Lchµ6a DQ979349 DI (AC)3(CA)3(CC)
(AC)8

187 94° C
5 min

30× 94° C
30 s

56° C
45 s

72° C
45 s

72° C
10 min

Lchµ8a EF583690 DI (TG)23 238 94° C
5 min

30× 94° C
30 s

58° C
45 s

72° C
45 s

72° C
10 min

Lchµ9a EF583691 DI (CA)19 429 94° C
5 min

30× 94° C
30 s

58° C
45 s

72° C
45 s

72° C
10 min

a Primer with M13 based on Schuelke’s [2000] protocol. There were 10 additional cycles with the same conditions, except for the annealing 
temperature of 53° C, to anneal the labelled M13 primer.
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taining: ≤10 ng of DNA; 0.5 µM of reverse primer and 0.5 µM of forward primer marked with dye 
labelled on its 5′ end, and the HotStar Taq Master Mix Kit in the concentration of 1× PCR buff- 
er, 1.5 mM MgCl2, 200 µM of dNTP and 2.5 units of HotStart Taq (Qiagen). In addition,  
1 mg/mL of bovine serum albumin was used to improve amplification. Microsatellite genotyping 
was performed in the MegaBACE 1000 automatic sequencer and the ET-ROX 550 size standard 
(GE Healthcare). The fragments were identified through the Genetic Profile 2.2 software (Amer-
sham Biosciences 2.2). 

Data Analyses 
Sample Sets
Our genetic analyses considered two sample sets: one (“total individuals”)in which we in-

cluded all individuals, related and unrelated, and another (“unrelated individuals”) in which we 
excluded closely related individuals to increase the accuracy of genetic structure analysis [Rodrí-
guez-Ramilo and Wang, 2012]. We tested our data in these two ways following recommendations 
that researchers should consider the effects of monogamy and family organization on the popu-
lation structure [Anderson and Dunham, 2008]. The social system of lion tamarins consists of 
family groups with cooperative breeding and a typically monogamous mating system [Baker et 
al., 1993, 2002]. Furthermore, the clustering analyses performed by STRUCTURE can be influ-
enced by the presence of highly related individuals in the samples [Rodríguez-Ramilo and Wang, 
2012]. Our samples were obtained from social groups, which might bias our results. However, 
withdrawing related individuals from the analyses also influences the results of STRUCTURE by 
reducing the sample size in each region [Kalinowski, 2011]. Therefore, these two data sets – total 
individuals and unrelated individuals – were considered in genetic analyses. However, because 
these two sets had similar results, for the majority of the subsequent analyses we showed only the 
results of the total sample set.

We inferred the pairwise relationships using the maximum likelihood estimator (ML) im-
plemented in the ML-relate software that can account for null alleles [Kalinowski et al., 2006]. 
The relationship (half-siblings, full siblings, parents-offspring and unrelated) was estimated for 
each pair of individuals in a social group while taking into account the loci containing null alleles. 
Because the relationships are strongly affected by sampling error, we also performed likelihood 
ratio tests using 100 simulations to pairs of individuals who are more likely to be half-siblings, 
full siblings or parents-offspring (putative relationships) versus unrelated (alternative relation-
ships). Only 1 individual from each significantly related pair indicated by ML (p < 0.05) was re-
moved in order to maximize the sample number within each social group. To prioritize the prob-
able parents (adult individuals) in the sample set, individuals’ age group [following Baker et al., 
1993, 2002] and observational data were also used (apart from molecular data) when identifying 
the (un)related individuals. These removals were performed manually in order to keep in the 
unrelated sample set all those individuals that were unrelated to any other individual within their 
social group through pairwise comparisons. Thus, a total of 90 samples were considered unre-
lated individuals: Ilhéus (10), Ararauna (7), Teimoso (5), REBIO (63) and Barro Branco (5). 

Population Genetic Tests 
We estimated the error rate as the ratio between observed number of allelic differences and 

total number of allelic comparisons [Bonin et al., 2004]. We also performed Hardy-Weinberg 
equilibrium tests in GENALEX version 6 [Peakall and Smouse, 2006]. The p values for all tests 
were corrected for multiple comparisons using the sequential Bonferroni procedure – p interval: 
0.0045 < α < 0.0500 [Rice, 1989]. 

Standard Genetic Indices 
We obtained indices of genetic diversity in 4 genetic groups assigned on the basis of some 

genetic structure analyses (see Results): Ilhéus, Teimoso, REBIO-Ararauna (constituted by  
REBIO and Ararauna geographic groups together) and Barro Branco. We used GENALEX6 
[Peakall and Smouse, 2006] to estimate allele frequencies, number of alleles (Na), observed het-
erozygosity (Ho), and unbiased expected heterozygosity (He) per locus and population. We cal-
culated allelic richness and the private allelic richness using HP-Rare [Kalinowski, 2004, 2005]. 
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The mean number and standard deviation for genetic indices per locus and population were also 
reported. After testing the data normality using Shapiro’s test, we tested the significant differ-
ences between pairwise comparisons of all means using an ANOVA test (F and p values reported) 
and the Kruskal-Wallis test (χ2 and p values reported) to parametric and non-parametric data, 
respectively. These analyses were performed in R 3.2.2 software [R Core Team, 2016]. 

Because pairwise comparisons of the mean of all genetic indices using the total samples ver-
sus unrelated samples showed no statistically significant differences, we showed only the results 
of the total individuals set. This is also a good indication that relatedness is not an issue to estimate 
the genetic indices [as in Peterman et al., 2016; Moraes et al., 2017]. Deviation from mutation-
drift equilibrium in REBIO Una (having a large enough sample size, also for the unrelated set) 
was also tested with BOTTLENECK 1.2.02 (10,000 replications) [Piry et al., 1999]. As the muta-
tion model underlying our microsatellite markers was unknown, data were analysed under the 
2-phase model (assuming 95% single-step mutations) as well as the stepwise mutation model.

Population Genetic Structure 
We tested for population genetic structuring using the STRUCTURE 2.3 software [Pritchard 

et al., 2000]. STRUCTURE uses a Markov chain Monte Carlo procedure to estimate the poste-
rior probability that the data fit the hypothesis of K clusters (Pr [X/K]). We estimated the number 
of clusters using 10 independent runs for K = 1–8, a Markov chain Monte Carlo procedure of 
1,000,000 steps and a period of burn-in of 500,000 steps. Initially, the program was run without 
a priori information from the source population, using the models of admixture and correlated 
allele frequencies. As multiple methods for the estimation of K are recommended [Evanno et al., 
2005; Kalinowski, 2011], we therefore determined the number of genetic groups using: (1) the 
optimal value of the posterior probability (K [Pr [X/K]]) given as LnP(K) [Pritchard et al., 2000] 
and (2) the modal value of ∆K, a measure of the second-order rate of change in the likelihood of 
K [Evanno et al., 2005]. The results of these analyses were generated using STRUCTURE HAR-
VESTER [Earl and von Holdt, 2012]. 

We also investigated the degree of genetic differentiation among the 5 main geographic 
groups using factorial correspondence analysis (FCA) performed in GENETIX [Belkhir et al., 
1996–2004], and the values of global and pairwise Fst measures [Wright, 1978] performed in GE-
NALEX6 [Peakall and Smouse, 2006]. The Fst results were generated using a significance level of 
0.05 and 9,999 permutations. In order to test for isolation by distance [Rousset, 1997], we used 
GENALEX to perform the Mantel test [Mantel, 1967] with 9,999 random permutations. The re-
lationship between matrices of Fst and linear distances in kilometres (16–98 km) was tested be-
tween the 5 main geographic groups. 

Results 

Population Genetic Tests 
In total, 162 alleles (approx. 5%) selected randomly were attempted for re-am-

plification. However, 2 alleles (1 locus for 1 individual) could not be typed for both 
amplifications, and another 16 alleles could be typed for only 1 amplification, but not 
for the other. Among the effectively re-amplified 144 alleles in 5 loci, we found 4 al-
lelic drop-outs, corresponding to an error rate of 2.8%. When separating the samples 
by their geographic groups, REBIO presented significant deviations from Hardy-
Weinberg equilibrium in 4 loci, but only when Piedade was included in the analyses. 

Standard Genetic Indices
The mean number of alleles per locus and population was 3.6 ± 0.2, and the mean 

allelic richness was 1.5 ± 0.07. The overall Ho was 0.5 ± 0.04 and was not significant-
ly different from the overall He of 0.51 ± 0.03. Most overall pairwise comparisons be-
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tween sites showed no significant differences (p > 0.05) with a particular exception 
for the average number of alleles Na (p ≤ 0.01), likely due to differences in sample 
sizes. As such, we only found significant differences in the allelic richness when we 
compared Teimoso and REBIO-Ararauna (F = 6.41, p = 0.02), and Teimoso and Bar-
ro Branco (F = 9.13, p = 0.007). Also, when we compared the He of Teimoso and that 
of REBIO-Ararauna (F = 6.41, p = 0.02), and Teimoso and Barro Branco (F = 9.13,  
p = 0.007), we found significant differences (Table 2). Given that variations in the Na 
and He averaged over populations for each locus, using 7 specific markers for the tar-
get species (Na = 2.5–5.0; He = 0.40–0.70) and 4 specific markers for L. chrysopygus 
(Na = 2.8–4.0; He = 0.38–0.64), were similar to each other, we considered that our data 
did not show ascertainment bias. Finally, for both mutation models (2-phase model 
and stepwise mutation model) we found no evidence (Wilcoxon test: p > 0.05; mode-
shift test: normal L-shaped frequency distribution) for bottlenecks (heterozygosity 
excess) in REBIO Una.

Population Genetic Structure 
In our tests for genetic clustering, the probability value with the lowest variance 

occurred when K = 2, indicating population subdivision. Estimates of K using ΔK also 
presented the highest value when K = 2 (Table 3). When K = 2, REBIO is in a cluster 
with Ararauna (REBIO-Ararauna) and Ilhéus, Teimoso and Barro Branco are in an-
other cluster (Ilhéus-Teimoso-Barro Branco). In contrast, the FCA showed a group-
ing between REBIO and Ararauna and some degree of differentiation among other 
remaining areas (Fig.  2). Comparisons between pairs of populations (Fst) showed 
moderate to high differentiation among all remaining areas (Table 4); although when 
we considered unrelated individuals, REBIO and Ararauna presented no significant 
differentiation (Fst = 0.02, p = 0.24). Global Fst measures confirmed this significant 
and high genetic differentiation among populations (Fst = 0.21, p = 0.0001). In addi-
tion, Ilhéus, Teimoso, REBIO-Ararauna, and Barro Branco showed private alleles 

Table 3. STRUCTURE results of L. chrysomelas using two sample sets: total and unrelated indi-
viduals

K Mean LnP(K) SD ∆K

total unrelated total unrelated total unrelated

1 –3,171 –2,119 0.44 0.22 – –
2 –2,910 –1,982 0.64 1.96 201.73 44.90
3 –2,779 –1,933 30.70 7.33 0.76 3.36
4 –2,671 –1,909 32.40 6.62 1.18 2.31
5 –2,602 –1,870 1.58 5.37 9.84 2.61
6 –2,548 –1,844 2.49 12.91 3.41 1.04
7 –2,486 –1,805 0.77 5.85 42.00 12.65
8 –2,456 –1,840 10.80 10.71 – –

The highest estimates for K are shown in bold. The LnP(K) and standard deviation (SD) were 
used according to Pritchard et al. [2000], and ∆K according to Evanno et al. [2005].
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with some differentiation among groups. The Mantel test done on the total individu-
als showed a significant correlation between the matrices of geographic distance and 
genetic differentiation among groups (r2 = 0.34, p = 0.008). However, the correlation 
was lower and non-significant when the test was done on the unrelated individuals 
(r2 = 0.14, p = 0.07). 

Discussion 

Genetic Diversity 
Our results indicate that GHLT populations may be showing signals of relative-

ly low genetic diversity, within the range observed for other lion tamarins and similar 
to the captive GHLT populations (Table 5) – although differences in analyses and 
sampling between these studies should not be ignored. Genetic studies with lion tam-
arins differ in the number of samples, populations and microsatellite loci, and in the 
type (skin, blood or hair) and origin (wild life or captivity) of samples, making it dif-
ficult to compare them. Considering these differences, the mean expected heterozy-
gosity for GHLT was similar to that observed for Leontopithecus rosalia [Grativol et 
al., 2001; Moraes et al., 2017] and not much higher than the values reported for Leon-
topithecus caissara [Martins and Galetti, 2011; Martins et al., 2012] and L. chrysopygus 
[Ayala-Burbano et al., 2017]. The average number of alleles was relatively high for 

Axis 1 (33.6%)
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Fig. 2. The clusters of L. chrysomelas individuals distributed in southern Bahia, Brazil, using fac-
torial correspondence analysis and total individuals sampled. Each individual is represented by a 
point, and genetic clusters are highlighted by the polygons: Barro Branco, Ilhéus, REBIO-Ararau-
na and Teimoso. Note that individuals from Ararauna geographical group are shown in white, 
mainly hidden by grey dots that represent individuals from REBIO geographical group. 
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GHLTs in the wild, but this might be (partially) due to differences in sample sizes (for 
which this parameter is relatively sensitive). Moreover, the average number of alleles 
per subpopulation of GHLTs was similar to the subpopulation variation observed for 
L. rosalia – 2.0 ± 0.4–3.8 ± 0.3 [Grativol et al., 2001] and 2.9 ± 0.7–5.0 ± 1.8 [Moraes 
et al., 2017]. Although our sampling and laboratory procedures follow previous  
studies using hair samples captured from lion tamarins [Orefice, 2015; Ayala-Burba-

Linear 
distance, km

Fst p value

REBIO × Ararauna 16 0.14 0.000
Teimoso × Ararauna 42 0.41 0.030
Teimoso × REBIO 45 0.28 0.000
Teimoso × Barro Branco 46 0.37 0.005
Ilhéus × REBIO 61 0.17 0.000
Ilhéus × Teimoso 65 0.32 0.033
Ilhéus × Ararauna 71 0.31 0.001
Barro Branco × Ararauna 87 0.28 0.020
Barro Branco × REBIO 96 0.17 0.000
Barro Branco × Ilhéus 98 0.25 0.000

Table 4. Pairwise linear 
distance, Fst and its 
significance (p) based on 
9,999 permutations for 122 
GHLTs distributed in south-
eastern Bahia, Brazil

Table 5. Genetic diversity in all 4 Leontopithecus species

Species Samples Loci Pops Na He Mantel test (r²) Reference

L. chrysomelas 
(wild)

84 11 1 5.3 0.57 0.34* This study

L. chrysomelas 
(captive, Brazil)

104 16 2 4.8 0.6 – Orefice [2015]

L. chrysomelas 
(captive, Europe)

29 9 1 3.6 0.51 – Galbusera and Gillemot [2008]

L. caissara 
(wild)

42 9 2 2.6 0.45 0.16 Martins et al. [2012]

L. chrysopygus 
(wild)

10 15 1 2.0 0.40 – Ayala-Burbano et al. [2017]

L. chrysopygus 
(captive, Brazil)

37 15 3 2.3 0.46 – Ayala-Burbano et al. [2017]

L. rosalia
(wild)

57 5 4 2.8 0.54 0.92 Grativol et al. [2001]

L. rosalia 
(wild)

239 14 6 3.7 0.56 – Moraes et al. [2017]

Number of samples, loci, and populations (pops) analysed; Na, mean number of alleles; He, mean expected 
heterozygosity; r², significant isolation by distance obtained in each study cited. The asterisk (*) indicates a significant 
isolation by distance for all L. chrysomelas samples (122) and populations (4) in this study. Na and He estimate for 
REBIO-Ararauna (the largest sample; 84 individuals) only are reported, in order to avoid bias due to small sample 
sizes in this study. As such, values for L. chrysopygus from the wild might be underestimated but are reported by lack 
of alternatives.
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no et al., 2017; Moraes et al., 2017], these results may also be influenced by genotyping 
error.

Our results show that the genetic diversity of the Barro Branco population was 
comparable to that of the other studied populations, although GHLT populations in 
the western region are smaller, more isolated by a matrix of non-forest, with high 
rates of mortality [Guidorizzi, 2008; Raboy et al., 2010], and had a small sample size. 
In fact, Barro Branco had the highest average of all genetic diversity indexes (includ-
ing many private alleles), except for the number of alleles. It should be noted that 
these results are based on neutral nuclear markers (microsatellites), which are less 
sensitive to bottleneck effects than mitochondrial haplotypes. The highest average of 
the nuclear genetic diversity indexes in Barro Branco might be an indication of a re-
cent bottleneck, resulting in a small population that still had not had time for nuclear 
allele fixation through genetic drift [Birky et al., 1983]. This genetic contribution of 
the western population to the overall genetic diversity of the species warrants the need 
for further research (using other genetic markers and more populations) to under-
stand the ecological processes affecting the demography and, consequently, the ge-
netics of this population. GHLT populations in the western region may represent an 
important gene pool for this species – particularly in future scenarios of climate 
change [Meyer et al., 2014] – but this should be investigated further.

The genetic diversity results also indicate the importance of ex situ populations 
for the conservation of the GHLT (Table 5). Results found in this study showed sim-
ilar estimates of genetic diversity with those found in captive GHLT populations 
[Galbusera and Gillemot, 2008; Orefice, 2015], even though the captive population is 
based on a relatively small number of founders (around 40). In addition, these similar 
genetic diversities among captive populations and our results were found even using 
different types of samples: skin (n = 29, loci = 9, Na = 3.67, He = 0.59 [Galbusera and 
Gillemot, 2008]), blood (n = 55, loci = 16, Na = 5.1, He = 0.65) and hair (n = 49, loci 
= 16, Na = 4.6, He = 0.55) [Orefice, 2015]. The importance of genetically diverse cap-
tive populations for the conservation of lion tamarin species with markedly smaller 
wild populations has also been documented [Ayala-Burbano et al., 2017; Moraes et 
al., 2017]. In the case of L. rosalia, the captive population contributed greatly to the 
wild population by means of a reintroduction programme [Kierulff et al., 2012; 
Moraes et al., 2017]. 

Population Genetic Structure
Our results indicate a genetic structuring of GHLT populations. The analyses of 

genetic structure using Bayesian model-based clustering (i.e., STRUCTURE) showed 
differentiation into 2 clusters. FCA and Fst analysis further differentiate the data into 
4–5 discrete clusters. Both results are informative for conservation planning. When 
the microsatellite data were split into 2 clusters, the first cluster included REBIO-
Ararauna. The similarity is probably related to the proximity between the areas: they 
are separated by 16–20 km of relatively continuous rain forest [Oliveira et al., 2011]. 
The second cluster included samples from Ilhéus, Teimoso and Barro Branco. These 
3 geographic groups are relatively distant from each other (> 40 km), and their ge-
netic similarities could be due to historical connections. Again, it should be noted that 
mtDNA is more sensitive to bottleneck effects than nuclear genes, and that gene flow 
sufficient to maintain nuclear panmixia may allow differentiation of mitochondrial 
lineages in different local demes. However, there is no additional evidence for this. 
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Furthermore, genetic structure results could also be influenced by sample size and/or 
genotyping errors [Pompanon et al., 2005; Kalinowski, 2011; Meirmans, 2015].

Even though the genetic structure is clear, as indicated by the STRUCTURE 
analyses (K = 2), alternative scenarios of more structure were suggested when consid-
ering FCA and Fst results. These results indicate that REBIO-Ararauna forms a dis-
crete cluster that differs from the other geographic groups as much as the other geo-
graphic groups differ among themselves – Ilhéus, Teimoso and Barro Branco. These 
are important considerations for conservation, because the relative continuity of the 
landscape currently provided by the cabruca-dominated matrix may not be enough 
for the maintenance of gene flow, particularly for long distances such as observed be-
tween these patches (≥20 km). A landscape genetic study showed that L. rosalia may 
be able to disperse up to 8 km if the landscape is functionally connected [Moraes et 
al., 2018].

One issue embedded within the concept of habitat fragmentation is the impor-
tance of geographical distance as a metric of genetic isolation among populations 
[Gibbs, 2001; Fahrig, 2003]. In our case, this holds true when considering the cluster 
REBIO-Ararauna. Nevertheless, population genetic simulations have shown that 
gene flow in lion tamarins is expected to be limited by distance and by other factors 
such as the type of non-forest matrix and barriers, leading to a strong genetic differ-
entiation among groups over time [Di Fiore and Valencia, 2014]. In this study, the 
Mantel test estimated that only 34% of the variance in genetic distance among GHLT 
populations can be explained by geographic distance alone. On the other hand, the 
correlation between the GHLT populations was not significant when considering 
only unrelated individuals within each population. Thus, isolation by distance is a 
partial explanation for the variance in genetic distance given an incomplete sampling. 
Other factors such as physical barriers (e.g., open areas and roads) and behaviour may 
help explain additional variance in the differentiation among GHLTs, similar to ob-
servations for L. rosalia [Di Fiore and Valencia, 2014; Moraes et al., 2018]. 

Implications for Conservation 
This study suggests that GHLT populations have a relatively low genetic diver-

sity similar to L. rosalia [Grativol et al., 2001; Moraes et al., 2017] and L. chrysopygus 
[Martins and Galetti, 2011; Martins et al., 2012]. However, GHLTs have a larger over-
all population size and geographic distribution compared with other lion tamarins, 
which might imply a relatively secure conservation status [Holst et al., 2006]. Further-
more, GHLTs showed a process of population genetic structuring, and linear distance 
did not explain the genetic distance between sites when including unrelated individ-
uals. These findings differ from the expected, because until now we believed that the 
relative continuity of the landscape in the eastern region from the GHLT geographic 
distribution, enabled by cabrucas, was sufficient to maintain a panmictic population 
(or a simple isolation-by-distance situation) and a high genetic diversity [Holst et al., 
2006]. Apart from geographic distance, there appear to be additional, unknown bar-
riers or resistance (physical and/or behavioural) to gene flow within these apparently 
continuous forest mosaics [as also observed by Radespiel et al., 2008]. 

Although our results indicate a genetic structuring process of GHLT populations 
in the eastern region, the Ilhéus population (residing in the cabruca habitat) retained 
a genetic diversity similar to that in the REBIO-Ararauna cluster, which includes the 
largest protected conservation area for this species. Furthermore, field studies showed 
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that GHLTs reproduce and persist well in cabruca, to the point of maintaining a high 
population density [Oliveira et al., 2011]. The importance of cabruca for species con-
servation has been reported, since it offers resources similar to those found in native 
forests [Raboy et al., 2004; Oliveira et al., 2010]. However, whether functional con-
nectivity is fully maintained based on preservation of cabruca without additional con-
servation intervention requires further evaluation. Other gaps in landscape connec-
tivity (e.g., open areas and roads), which vary according to species behaviour and 
biology [Zeigler et al., 2013; Tischendorf and Fahrig, 2000], must be identified and 
addressed in conjunction with the continued preservation of cabruca and other agro-
forestry systems. 

Another consideration for conservation is the importance of both eastern and 
western populations in terms of region-specific and overall genetic diversity. To the 
east, the population of GHLTs in Una Biological Reserve represents an important 
genetic population (e.g., no evidence for a recent genetic bottleneck was found in our 
study). The REBIO Una and surrounding forests have been considered a potential 
source population for the conservation of GHLTs because of the likelihood that the 
population will maintain genetic diversity over time [Holst et al., 2006; Zeigler et al., 
2010], and that they are located in a climatically suitable region for GHLT persistence 
[Meyer et al., 2014; Guy et al., 2016]. However, the maintenance of a viable popula-
tion of GHLTs in the REBIO Una can be compromised if the process of deforestation 
in its surroundings continues [Zeigler et al., 2013]. 

Regarding the western portion of the species’ range, previous studies suggested 
that neglecting western populations may have negative implications for the conserva-
tion of the species [Guidorizzi, 2008; Zeigler et al., 2010, 2013]. Future actions should 
investigate the adaptive genetic variation of populations of GHLTs in this region, 
make inferences about the species’ population structure and propose possible man-
agement options to preserve its genetic diversity. For other vertebrates, this region 
was considered a climate refuge from the late Pleistocene that holds greater and more 
stable genetic diversity [Carnaval et al., 2009]. Furthermore, given its potential ge-
netic adaptation to drier environments, the genetic variation in the western popula-
tions might constitute a valuable resource allowing the GHLT to be able to adapt to 
climate changes or to longer periods of droughts.

Our results may serve as a baseline for future assessments and conservation 
plans. Recent research has shown that the situation for GHLTs has worsened espe-
cially in the western portion of its geographic distribution [Raboy et al., 2010; Zeigler 
et al., 2010; Meyer et al., 2014]. Only 36% of the habitat within the GHLT distribution 
area (and study area) is suitable for the species’ persistence [Guy et al., 2016]. To the 
east, rapid loss of their natural habitat, the conversion of cabruca to other agricul-
tural crops or pastures threaten GHLTs [Pinto and Rylands, 1997; Holst et al., 2006; 
Raboy et al., 2010]. Additionally, urban expansion of the cities of Ilhéus and Una has 
turned the region into one of the largest urban centres in southern Bahia. This devel-
opment, with accompanying highways, presents potential physical barriers to disper-
sal. These modifications in the habitat and a social system with difficult acceptance 
of dispersers could be contributing to the population structuring and viability of 
GHLTs [Di Fiore and Valencia, 2014] and, therefore, should be assessed and consid-
ered during the elaboration and implementation of conservation programmes for the 
species.
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